
WiseCam: Wisely Tuning Wireless Pan-Tilt
Cameras for Cost-Effective Moving Object Tracking

Jinlong E∗†, Lin He†‡, Zhenhua Li†, Yunhao Liu†
∗ Renmin University of China † Tsinghua University ‡ Zhongguancun Laboratory, China

{ejinlong89, helin1170, lizhenhua1983, yunhaoliu}@gmail.com

Abstract—With desired functionality of moving object track-
ing, wireless pan-tilt cameras are able to play critical roles
in a growing diversity of surveillance environments. However,
today’s pan-tilt cameras oftentimes underperform when tracking
frequently moving objects like humans – they are prone to lose
sight of objects and bring about excessive mechanical rotations
that are especially detrimental to those energy-constrained out-
door scenarios. The ineffectiveness and high cost of state-of-
the-art tracking approaches are rooted in their adherence to
the industry’s simplicity principle, which leads to their stateless
nature, performing gimbal rotations based only on the latest
object detection. To address the issues, we design and implement
WiseCam that wisely tunes the pan-tilt cameras to minimize
mechanical rotation costs while maintaining long-term object
tracking. We examine the performance of WiseCam by exper-
iments on two types of pan-tilt cameras with different motors.
Results show that WiseCam significantly outperforms the state-
of-the-art tracking approaches on both tracking duration and
power consumption.

I. INTRODUCTION

As one of the most important professional surveillance
instruments, wireless pan-tilt cameras have gained tremendous
popularity in recent years. Their overall global market value
has exceeded $3 billion in 2020 and is expected to steadily
grow at ∼2.5% in the next years [1]. At present, pan-tilt
cameras manufactured by dominant companies (e.g., Axis,
FLIR, and Honeywell) almost target DC electricity-supplied
indoor monitoring scenarios such as elderly/child caring and
anti-theft alarming, where the most desired functionality is
moving object tracking. Owing to wider-area coverage brought
by the flexible rotations, pan-tilt cameras are also potentially
conducive to surveillance in diverse rural off-the-grid envi-
ronments (e.g., farmlands, fisheries), in replace of multiple
commonly-used fixed cameras.

Nevertheless, the tracking performance of today’s pan-tilt
cameras is far from satisfactory, especially for frequently
moving objects like humans and in the energy-constrained
scenarios (§II-A). Most commodity pan-tilt cameras operate
with two stepper motors, each of which drives a gear shaft
to rotate grid by grid [2]. Typically, they adopt a grid-based
tracking approach that continuously seeks a moving object
through vision detection and then searches for pan-tilt grids
that makes the object closest to the camera’s gaze direction.
Unfortunately, the two-dimensional searching process involves
time-consuming rotations and comparisons among grids, mak-
ing the camera hardly keep sight of object motion. Meanwhile,

frequent acceleration and deceleration among grids incur large
power consumption.

There are also pan-tilt cameras assembled with a small fixed
camera and an electric tripod head driven by two servo motors,
which conduct rotations by any angles with high speed and
precision [3]. The mechanical properties make it suitable to the
target-based tracking approach. Whenever a detected object
is not in the center of the camera’s field of view1 (termed
view center), pan-tilt rotating angles are calculated based
on the object center’s two-dimensional relative coordinates,
respectively [4], [5]. Such an approach is free from inefficient
grid search, but it sensitizes the camera to the object’s small
motions and results in excessive stacked rotations. The camera
consumes a large amount of energy and probably loses sight
of objects when asynchronously executing them.

An intuitive approach to overcoming the above obstacle
is to set a fault-tolerant boundary around the camera’s view
center and restrains pan-tilt rotations when the target object’s
center moves within it [6]. As the boundary size is subject to
a number of object properties (e.g., size, speed, direction),
it is difficult to set a proper one in practice – either too
small to reduce the frequency of rotation generation or too
large to catch up with the object. An alternative approach to
reducing the camera’s rotation delays is to adopt a proportion-
integration-differentiation (PID) controller [7] that iteratively
calculates the difference between the object center and view
center as an error value and obtains pan-tilt rotating angles
based on correction of PID terms. However, complex tuning
of PID coefficients is required to satisfy the validity criteria.

In a nutshell, all the state-of-the-art approaches continuously
conduct object detection and statelessly determine pan-tilt ro-
tations only based on an object’s instant position, which leads
to considerable energy costs and a high risk of tracking fail-
ure (§II-B). The stateless nature of these tracking approaches
mainly results from the industry’s simplicity principle [8] (i.e.,
generally adopting those easy-to-implement and low-overhead
schemes), but it is often inapplicable to complex environments
and/or high demands in practice. In view of this, we design
WiseCam to minimize pan-tilt cameras’ rotation costs while
maintaining its long-term object tracking online (§III-A). Our
key idea is to follow closely state variations of the target object
and accordingly refrain from dispensable gimbal rotations.

1The area that is visible to a camera is normally referred to as the camera’s
field of view.



While the idea is promising and straightforward, to make it
work in high efficiency and with low overhead, we focus on
addressing the following two technical challenges.

• To keep a close watch on an object in a unified space,
we ameliorate the pan-tilt cameras’ detection scheme and
integrate correlation filtering that matches the detected
object in consecutive frames by element-wise operations on
multiple features. On this basis, we abstract critical points
from numerous object pixels in each frame and transform
their non-unified coordinates to the trajectory of geodetic
coordinates in a panoramic space (§III-B).

• To efficiently learn object motion data for online determi-
nation, we design a fast-convergent reinforcement learning
(RL) model to tune the amplitude of pan-tilt rotations, with
multiple associated neural networks and well-customized
rewards to capture spatio-temporal motion features. We
further explore learning experience from different objects
of the same type (e.g., humans) and fuse them by model
aggregation, so as to accelerate generalization for determi-
nation on new objects (§III-C).

We implement WiseCam to support moving object track-
ing on both stepper-driven and servo-driven pan-tilt cam-
eras (§IV-A). We evaluate WiseCam on the two heterogeneous
cameras through real-world human tracking experiments and
data-driven testing of walking trajectories involving thousands
of humans (§IV-B∼§IV-D). In contrast to the state-of-the-
art tracking approaches, WiseCam yields 2∼8 times longer
average tracking duration, and meanwhile, it can reduce the
rotational power consumption of the test cameras by at least
38% and is applicable to the solar-powered pan-tilt cameras.
In addition, the overhead of WiseCam keeps low and steady
when confronted with intensive tracking tasks (the resource
usages are steady at 5%∼8%), which well supports building
it in the commodity pan-tilt camera chips.

II. MOTIVATION

This section introduces background of the state-of-the-
art moving object tracking approaches of pan-tilt cameras,
followed by real-world measurements of their performance
which motivates our study.

A. Tracking with Pan-Tilt Cameras

Pan-tilt cameras are capable of automatic directional control
that makes it possible to continuously track a moving object
in wide areas with a single camera and adaptive to various
surveillance environments. In spite of widespread adoption in
indoor elderly/child caring and anti-theft alarming, commodity
pan-tilt cameras have yet to be deployed in the energy-
constrained outdoor environments2. To explore whether a pan-
tilt camera can achieve long-term and energy-efficient moving
object tracking, we first demystify the state-of-the-art tracking
approaches adopted by two types of pan-tilt cameras.

2New outdoor wire-free and solar-powered cameras like Reolink Go [9]
and Eufy SoloCam [10] have not provided pan-tilt rotations.

Initial Gaze 
Direction

Backward 
Rotation

Final Gaze 
Direction

Grid-Based 
Rotation

Gear 
Shaft

Pan Grids

Moving 
Object

(a) Grid-Based Tracking

Initial Gaze 
Direction

Final Gaze 
Direction

Target-Based 
Rotation

Moving 
Object

View 
Angle Φ 

Pan Rotating 
Angle θrp 

View Center 

w

h

Object (ox,oy)

(b) Target-Based Tracking

Fig. 1. Moving object tracking with two types of pan-tilt cameras (in the pan
dimension).

Grid-Based Tracking. This tracking approach is typically
applied by pan-tilt cameras with stepper motors. They divide
a full rotation into equal steps and control the pan/tilt gear shaft
to rotate one grid with a certain number of pulses [2]. On this
basis, a camera conducts moving object detection in each video
frame through vision detection algorithms like temporal frame
differencing [11] or background subtraction [12]. Every time
an object is detected, the camera seeks a pair of pan-tilt grids
that makes the object closest to its gaze direction. Specifically,
driven by the pan and tilt motors in sequence, the two gear
shafts each rotate grid by grid towards the moving object and
finally stop at a grid superior to the neighbor grids. When the
target object is in the direction between two grids, the previous
grid may make the object closer to the gaze direction compared
with the current one, and this will trigger the gear shaft to
rotate back to it (termed backward rotation). Fig. 1(a) gives a
demonstration of the rotation process in the pan dimension.
Target-Based Tracking. In contrast to stepper motors, micro
digital servo motors are controlled by a pulse of variable
width that determines the pan/tilt rotating angle [3], which
provides much higher rotation speed and position precision.
The low cost, close to that of stepper motors (only ∼$1),
makes it applicable to pan-tilt cameras. In light of the motors’
properties, the most commonly-used basic tracking approach
is to keep the camera targeting a detected object (the detection
algorithm is similar to above). When the object center is not
in the camera’s view center, the pan-tilt gear shafts each rotate
by a certain angle according to the proportion of pan/tilt view
angle ϕ3 to frame width w or height h. Given the object
center’s coordinates relative to the view center (ox, oy), the
pan and tilt rotating angles are calculated respectively by

(θrp, θrt) = (−2ox ∗ ϕ/w, 2oy ∗ ϕ/h). (1)

The pan-dimensional rotation in this approach is illustrated in
Fig. 1(b), in comparison with the previous grid-based rotation.

In face of continuous violent rotations probably incurred by
the above approach, an alternative approach is to set a fault-
tolerant boundary around the view center. Provided that the
target object keeps inside the boundary, the camera will not
rotate as the object moves. The boundary width and height are

3The view angle ϕ is determined by the camera’s focus length f and retina
size d (ϕ = arctan(d/2f)).



5

0 
Grid-Based  Target-Based  FT Boundary PID Control

10

15

20

25

30
Tr

ac
ki

ng
 D

ur
at

io
n 

(s
)

Stepper Motors 
Servo Motors

Fig. 2. Tracking duration of the state-of-the-art
approaches on two types of pan-tilt cameras.

5 15 25 35 45
Volunteer Ranking (by Duration)

10

15

20

25

30

Tr
ac

ki
ng

 D
ur

at
io

n 
(s

)

rb = 1/4 
rb = 1/3 
rb = 1/2 
rb = 2/3 
rb = 3/4
Optimal

Fig. 3. Tracking durations achieved with different
boundary-to-frame ratios.

0 5 10 15 20 25 30
Tracking Duration (s)

1

2

3

4

Ro
ta

tio
na

l P
ow

er
 (W

)

Grid-Based_Stepper 
Target-Based_Stepper 
FT Boundary_Stepper 
PID Control_Stepper

Grid-Based_Servo 
Target-Based_Servo 
FT Boundary_Servo 
PID Control_Servo

Fig. 4. Rotational power variances of the two
cameras with different tracking approaches.

generally set to be in equal proportion to the camera’s frame
width and height, where the boundary-to-frame ratio is denoted
by rb. Another alternative approach is to adopt a controller
employing feedback and correction based on proportional (P),
integral (I), and derivative (D) terms [7]. It minimizes the
error e(t) between a measured process variable and the desired
setpoint over time by adjusting a weighted sum of its PID,

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
, (2)

where Kp, Ki, and Kd are coefficients. In our case, we denote
error values eh(t) and ev(t) as the horizontal and vertical
distances between current object center and view center, and
accordingly calculate uh(t) and uv(t) as the object’s two-
dimensional moving distances (towards the view center) with
Eq. (2). On this basis, we can obtain the pan-tilt rotating angles
based on Eq. (1) by replacing (ox, oy) with (uh(t), uv(t)).

B. Measurements and Observations

We next conduct measurements on the above-described
state-of-the-art tracking approaches, carefully examining if
their real-world performance meets the long-term and energy-
efficient requirements of pan-tilt cameras’ practical use.

Measurement Methodology. We mainly concern the follow-
ing two metrics in our measurements:

• Tracking duration measures how long a pan-tilt camera can
keep sight of an object by rotations. The metric is significant
for surveillance, where it is desirable to record as many
object moving details as possible for behavior analysis.

• Rotational power consumption measures the power incre-
ment incurred by pan/tilt rotations for object tracking. The
metric is free from energy cost diversity among different ro-
tations and tracking durations. It is of particular importance
to those energy-constrained scenarios.

We study four state-of-the-art tracking approaches – grid-
based tracking, basic target-based tracking and its two alter-
natives fault-tolerant (FT) boundary and PID control. We run
each of them on pan-tilt cameras with stepper motors and servo
motors, respectively4. In the stepper-driven camera, the angle
between two adjacent grids (i.e., a step) is 15◦. We set the same

4The implementation is similar to that of WiseCam (illustrated in §IV-A).

virtual step for the servo-driven camera when conducting grid-
based tracking on it. To grasp the stability of the performance,
we recruit 50 volunteers with different body size and moving
speed to conduct the tracking experiment in sequence.

Concretely, the two pan-tilt cameras are hung in the middle
of the ceiling of a ∼15m2 room in turn, making the whole
room in the coverage through gimbal rotations. Each volunteer
walks around the room stochastically at his/her normal speed
until the pan-tilt camera loses track of him/her, during which
the movement may involve intermission and sudden changes
in direction or speed. For the latter two tracking approaches,
the volunteers conduct experiments with different values of
parameter(s) rb or (Kp,Ki,Kd), and we select the optimal
ones that achieve longest tracking duration for the final result
comparison. In the whole experiment, we connect a power me-
ter to the pan-tilt cameras to measure their power consumption.

Tracking Duration Results. The average, maximum, and
minimum tracking duration results of the 8 test items are
depicted in Fig. 2, where each test item is denoted as track-
ing approach motor type. As the figure shows, the tracking
durations of all approaches are not ideally long (less than
30 seconds). Moreover, the durations of the stepper-driven
camera are always shorter than the counterparts of the servo-
driven camera. It is largely due to the slow start and stop
property of the stepper motor, which makes the camera’s
rotation difficult to keep up with rapid object movements.
Although servo motors and target-based tracking can help
avoid inefficient operations, the basic target-based tracking
approach is very sensitive to the object’s small motions, which
may lead to excessive mechanical rotations that are executed
in an asynchronous manner.

In contrast, with properly selected parameters, the two
alternative approaches can increase the tracking duration by
reducing rotation intensity. However, the parameter(s) of both
approaches may be affected by quite a few object-specific
factors. As described in Fig. 3, the optimal (longest) tracking
durations are achieved with quite different boundary-to-frame
ratio rb for volunteers with various body sizes, moving speeds
and routes. In reality, it is difficult to set a proper-sized bound-
ary for general object tracking in real time. If the boundary
is not large enough, there may still be excessive rotations
executed asynchronously; if it is too large, there remains little
room for reaction to object moving out of the camera’s field of



TABLE I
AVERAGE ENERGY COST (WH) OF TWO CAMERAS WITH DIFFERENT

TRACKING APPROACHES FOR ALL VOLUNTEERS.

Tracking Approaches Stepper-Driven Servo-Driven
Grid-Based Tracking 4.546 3.641

Target-Based Tracking 4.095 3.512
With FT Boundary 3.846 3.228
With PID Control 3.639 3.090

view. Likewise, the PID coefficients (Kp,Ki,Kd) have poor
generalization to different motors and objects. In practice, the
parameter tuning process is complex and costly, and improper
values will result in frequent tracking failures.

Furthermore, repeatedly conducting object detection in each
frame with the frame differencing algorithm also makes the
camera prone to tracking failures. According to our measure-
ments, a considerable proportion (∼40%) of tracking failures
occur when the volunteers move intermittently. This is because
once a volunteer stops moving, the camera may take a pack
of noise pixels in background as the next tracking target and
thus lose sight of the volunteer. The drawback hinders the
cameras from operating when there is more than one person,
as the tracked target will frequently change among them and
the camera cannot keep tracking anyone.

Power Consumption Results. We also monitor the two
cameras’ power variances with each state-of-the-art approach
(adopting the optimal parameters) every second throughout
each volunteer’s tracking process. We can obtain the 8 test
items’ incremental rotational power consumption by deducting
the two cameras’ normal working power (on average 2.2
W and 1.5 W respectively) from the measured total power
variances. We visualize the results of all test items for a
volunteer who makes the longest total tracking duration with
Fig. 4. Here we omit to show the other volunteers’ power
variances as they follow the same trend. As depicted in the
figure, object tracking continuously brings considerable power
consumption to both cameras. The output power of stepper
motors is always high while that of servo motors is highly
variable. By integral operation, we can further estimate the
total energy cost of two cameras with the four approaches
(taking their normal working power into account). As shown
in Table I, the average energy cost results of 50 volunteers
for all the test items are beyond 3 Wh. In view of the typical
solar battery’s energy budget (48 Wh/day at most) [13], the
state-of-the-art tracking approaches would incur power cuts to
the pan-tilt cameras in off-the-grid outdoor environments.

Opportunities. The real-world measurements indicate that
the state-of-the-art tracking approaches are inadequate to
provide long-term tracking and inapplicable to fulfill the
energy-constrained scenarios. According to our observations,
the root cause is the stateless nature of these approaches
that determines gimbal rotations only based on instant object
detection, increasing risk of tracking failure and energy costs.
It is further due to the simplicity principle [8] that the above
easy-to-implement tracking approaches are popular on today’s

...
Motion 

Trajectory

Controller

Pan/Tilt 
Rotation State

Action

RL Agent

Reward

Video 
Frame Object 

Tracker

Moving Object 
Tracking

Rotation 
Actionap

at

ap
at

ap
at

...

Fig. 5. An architectural overview of WiseCam.

pan-tilt cameras. Fortunately, we also notice opportunities to
potentially address the unravelled obstacle. First, the pan-tilt
camera should keep gazing at the detected object throughout
the tracking process instead of detecting in each frame. Sec-
ond, the pan-tilt camera’s stay point could be decided based on
the object’s state variations to prevent dispensable rotations.

III. WISECAM DESIGN

Guided by our observations, we design WiseCam, a cost-
effective tracking approach of pan-tilt cameras that provides
long-term moving object tracking with low rotational energy
costs. We next describe our solution to achieve this goal.

A. System Overview

Fig. 5 depicts the high-level architecture of WiseCam. The
pan-tilt camera’s video frames are enqueued for moving object
tracking. Object Tracker matches the same moving object
that appears in different frames through correlation filtering
on multiple features, and then constructs a motion trajectory
in the camera’s panoramic space with a sequence of critical
points (§III-B). Taking as input the spatio-temporal object
motion information, RL Agent continuously tunes amplitude of
pan-tilt rotations with well-customized rewards. To accelerate
model convergence for online determination on new objects,
the agent fuses learning experience from the previous track-
ing (§III-C). The output rotation actions are cached in a queue
and then executed to control the camera’s pan-tilt rotations.

B. Long-Term Moving Object Tracking

We start with designing a scheme to track a moving object
in a long term, which involves correlating the detected object
across frames and constructing the object’s motion trajectory.

Object Detection and Correlation. Most commodity pan-
tilt cameras apply temporal frame differencing [11] as the
object detection algorithm, which calculates the intersection of
two pixelwise differences between consecutive video frames
(Ft−2, Ft−1, Ft) to obtain a difference frame Dt (i.e., Dt =
|Ft − Ft−1| ∩ |Ft−1 − Ft−2|). After thresholding to avoid
noise, the largest connected area in Dt is deemed as the
target moving object. Despite its simplicity and low cost,
the algorithm often results in incomplete object pixels and
largely affects the positioning accuracy. To precisely obtain the
object’s complete contour, we ameliorate the existing detection



algorithm by integrating regional optical flow. Concretely, a
frame is divided into a group of square regions, of which the
side length is the greatest common divisor of frame width
and height. For any frame Ft, we calculate a difference frame
and extract the target object’s pixels therein based on the
above-described differencing algorithm. Then only for each
pixel (x, y) in regions where the object is located (but not
the whole frame), we estimate a two-dimensional optical
flow vector u⃗ = (dx/dt,dy/dt) with the Lucas-Kanade
(LK) algorithm [14], which confirms the object’s contour and
movement pattern between adjacent frames. By this means,
we can acquire an object’s complete contour in any frame and
meanwhile reduce the computation overhead to the full.

To eliminate interference from background noise as well
as other objects (as shown in §II-B), correlating the same
object across frames is a high priority for long-term object
tracking. Instead of reconducting object detection in each
frame as in the state-of-the-art tracking approaches, here we
leverage correlation filtering [15] to determine the target object
in an arbitrary frame through element-wise operations in the
frequency domain. Specifically, we obtain the object’s updated
position and size5 in each frame with two filters. The position
filter fp conducts sampling on the frame image at twice object
size and generates a set of sample images. Likewise, the scale
filter fs scales up and down the object size to form a small
collection of candidates. We calculate the correlation of a filter
fx(x = p, s) with each sample (image or size) hk by

gk = hk ⊗ fx = F−1(F(hk)⊙F(fx)∗), (3)

where F and F−1 are 2-demensional fast fourier transform
and its inverse operation, and ⊙ and ∗ denote element-wise
multiplication and complex conjugate, respectively. To locate
the object in a frame, we find proper filters fp and fs as well as
hk’s that achieve the largest correlation through a least-squares
optimization method [15]. We recurrently execute the process
until no object is correlated in three consecutive frames, in
which case we re-detect a moving object. Note that such a
scheme enables the target moving object to be kept tracking
even when there are multiple objects visible to the camera.

Motion Trajectory Construction. Through the above efforts,
we can continuously acquire worthy object information like
position, size, and accurate contour. We next construct a
trajectory for the target object with such information, which
is conducive to wisely determining the camera’s rotations.
To reduce the influence of small motions, we represent the
object’s position by its centroid instead of the center of its cir-
cumscribed square. Given a set of pixels on and inside the con-
tour P = {(pix, piy)} (i = 1, · · · , n), we calculate the object
centroid’s coordinates (cx, cy) by cv = [(

∑n
i=1 p

i
v)/n] (v =

x, y)6. To keep the object staying in the camera’s field of
view, we also concern position variations of the object’s
contour points that are closest to the frame image’s boundaries.

5Here the two factors are reflected by two-dimensional coordinates of object
center and side length of the object’s circumscribed square, respectively.

6Here the operator [] means rounding the number to the nearest integer.

Field of View

(0,0)
Camera

View Center
(θgp,θgt)

(θcp, θct)
Object 

Centroid

Virtual 
Boundary 

Point
(θbp, θbt)

Gaze 
Direction

Fig. 6. Coordinates in the panoramic space.

Accordingly, we customize a virtual boundary point (bx, by)
by abstracting x-y coordinates from the contour points that
respectively maximize horizontal and vertical distances to the
image center, i.e., bv = maxi{|piv|} (v = x, y). We term the
virtual boundary point together with object centroid as critical
points.

Given that centers of different frames may be on various
angles as the camera rotates, we need further transform the
above-calculated coordinates relative to a frame’s image center
to absolute coordinates in a unified space. As depicted in
Fig. 6, a 360-degree panoramic space is generated by the
camera’s pan-tilt rotations. The camera’s gaze direction can be
represented by pan-tilt rotating angles (θgp, θgt) (ranging from
[−1/2Θu, 1/2Θu] (u = p, t), where Θp and Θt are maximum
rotating angles provided by the camera manufacturer). We
notice that the relative x-y coordinates of an object’s critical
points in a frame are proportional to pan-tilt angle differences
between the real object and view center, for which their pan-
tilt rotating angles relative to the camera’s view center can be
obtained based on Eq. (1). Therefore, we calculate the critical
points’ absolute coordinates in the panoramic space by

(θvp, θvt) = (θgp − vx ∗ ϕ/w, θgt + vy ∗ ϕ/h), (4)

where v = c, b represents the two critical points, w and
h are frame width and height, and ϕ is the camera’s view
angle. Finally, an object’s motion trajectory in frame Fm can
be expressed by a sequence of quadruples that represent the
object’s critical points in previous frames,

T⃗o = {(θicp, θictθibp, θibt)}, i = 1, · · · ,m. (5)

C. Online Rotation Determination

The above-described object tracking scheme enables the
camera to obtain the target object’s up-to-date motion trajec-
tory in its panoramic space in real time, which indicates the
object’s previous state variations in multiple dimensions (e.g.,
position, size, speed, and direction) and can be leveraged to
deduce the object’s next state. We next design a reinforcement
learning (RL) model to conduct appropriate pan-tilt rotations
at runtime with the motion trajectory information.
RL Model Formulation. An RL agent is built to keep
observing the target object’s instantaneous state Si in any
frame Fi and to determinate the pan-tilt rotation action ai,
which is expected to minimize the camera’s costs while



maintaining object tracking. Then the rotation action ai will
be executed to reorient the camera and produce a new state
of the object Si+1 that initiates a new round of learning and
determination. The mapping of Si → ai is determined by
the RL model’s control policy π(Si, ai), which is learnt and
updated during iterative state observation and action execution.

As the input of the RL agent, the state can be assembled
with the camera’s present gaze direction (θgp, θgt) and the
latest k quadruples of the object’s motion trajectory T⃗o.
According to Eq. (5), the state in the current frame Fm is
denoted with

Sm = (θ⃗mcp, θ⃗
m
ct , θ⃗

m
bp, θ⃗

m
bt , θ

m
gp, θ

m
gt), (6)

where the first four elements are sequences extracted from
the latest k quadruples by column, e.g., θ⃗mcp = {θicp} (i =
m − k + 1, · · · ,m). For a given state Sm, the RL agent
designates the pan-tilt rotation action am = (amp , a

m
t ). In order

to accommodate online determination, amp and amt are both
selected from a compact discrete action space A = {ωj} (j ∈
[−nau, nau] ∩ Z;ωnau < 1/2Θu, u = p, t), where ω is the
angle of a rotation unit, and (nap, nat) are rotation amplitudes
for two dimensions.

To make the RL agent learn from past experience, each
action is associated with a reward, which takes both tracking
status and rotation cost into account. The reward rm of action
am is calculated when the next state Sm+1 is produced. At
this time, we can exactly acquire the target object’s new
position and accordingly update its motion trajectory. When
the object gets out of the camera’s field of view, the camera
rotates immediately to pan-tilt angles of the latest object
centroid, which generally resumes tracking of the object at
a marginal cost. In this case, we set loss reward rml as
an enough large negative value (e.g., -10) to embody the
last action’s extremely adverse effect. If the object is still
in the camera’s field of view, we concern its distances to
the view boundaries as well as moving direction. Given the
camera’s new gaze direction (θm+1

gp , θm+1
gt ) and the updated

object motion sequences (θ⃗m+1
cp , θ⃗m+1

ct , θ⃗m+1
bp , θ⃗m+1

bt ) in the
state Sm+1, we calculate position reward rmp and direction
reward rmd respectively by

rmp = 1− 2|θm+1
bp |/Θp − 2|θm+1

bt |/Θt, (7)

rmd = −
θm+1
cp θ∆cp + θm+1

ct θ∆ct

(|θm+1
cp |+ |θm+1

ct |)(|θ∆cp|+ |θ∆ct|)
, (8)

where ∆θcu = θm+1
cu − θmcu (u = p, t). In addition, we adopt

cost reward rmc to embody costs of pan-tilt rotations,

rmc = 1− amp /(ωnap)− amt /(ωnat). (9)

To penalize loss of tracking and high rotation cost, the overall
reward rm should comprise all the above-described reward
metrics, and we define it as

rm = µrml + (1− µ)(βrmp + δrmd + ηrmc ), (10)

where µ ∈ {0, 1} indicates if the action makes the object get
rid of the camera’s field of view (µ = 1 means that loss of

.

.

.

Actor Network

.

.

.

Critic Network

Policy
π(Sm,am)

Value
Vπ(Sm)

.

.

.

.

.

.

A

A

A

.

.

.

.

.

.

θcp
m  θct

m  θbp
m   θbt

m

θcp
m-1 θct

m-1  θbp
m-1  θbt

m-1

θcp
m-k+1 θct

m-k+1 θbp
m-k+1 θbt

m-k+1

(θgp
m   θgt

m)

Motion Trajectory To
Gaze 

Direction θg

LSTMState Sm

Fig. 7. The RL model of WiseCam.

tracking occurs), and β, δ, and η are all hyper-parameters to
be adjusted.

The RL model’s internal structure is illustrated in Fig. 7.
Each input state Sm is transformed into a combination of four
sequences (ψ⃗m

cp, ψ⃗
m
ct , ψ⃗

m
bp, ψ⃗

m
bt ) by ψ⃗m

vu = {θivu − θigu} (i =
m−k+1, · · · ,m; v = c, b;u = p, t). To reason implicit spatio-
temporal features hidden in the time series, the four sequences
are fed into a long-short-term-memory (LSTM) structure [16]
with k cells. The sequences flattened by LSTM cells are
transmitted into two similar fully-connected neural networks
(NNs) – one outputs a rotation action based on features
extracted (termed actor), and the other one is served as a critic
that judges the action’s value. Each NN contains two hidden
layers and an output layer. The hidden layers employ the tanh
activation function [17] to enhance learning capabilities. The
output layer of the actor network takes softmax [18] as the
activation function that generates probability distribution of
each candidate action and finally provides the action with
largest probability, while that of the critic network estimates
the expected total reward starting at the present state.

Fast-Convergent Training. To adapt with the requirement
of online determination, the RL model should converge (i.e.,
stably generate reasonable decision) as soon as possible. Here
the training objective is to maximize the total cumulative
reward that the model receives. Policy gradient [19] is an
effective approach to achieving this goal, but it may suffer
from the problem of difficult convergence caused by substan-
tial policy changes. In view of this, we train the model with a
fast-convergent algorithm named proximal policy optimization
(PPO) [20] to avoid updates of parameter ξ that change the
control policy πξ(Sm, am) too much at each step. Specifically,
we formulate the gradient of cumulative discounted reward
with an advantage function Aξ(Si, ai)

7. In practice, each
update of ξ follows the policy gradient,

ξ ← ξ + α
∑
i

∇ξ log πξ(Si, ai)Aξ(Si, ai), (11)

where α is the learning rate. For any given (Si, ai, ri, Si+1),
Aξ(Si, ai) can be estimated by ri+γvξ(Si+1)−vξ(Si), where
γ serves as a discounting factor. To help the RL model fast

7Aξ(Si, ai) represents difference in the expected reward for action ai in
state Si, compared with averaged reward for actions drawn from policy πξ .



converge to a good policy, we bound the difference between
new and old policies and adopt their probability ratio rξ =
πξ(Si, ai)/π

′
ξ(Si, ai) to replace πξ(Si, ai) in Eq. (11). On this

basis, the model’s loss function is devised as

L(ξ) = E(min{rξAξ, c(rξ, 1− ϵ, 1 + ϵ)Aξ}), (12)

where the ratio rξ is clipped to be within the small interval
[1 − ϵ, 1 + ϵ] by function c(), and Aξ is short for the above
Aξ(Si, ai). By this means, the model will update policy
parameters smoothly and avoid jumpy decisions, so as to
achieve fast convergence.
Multi-Model Aggregation. With the above fast-convergent
training algorithm, the RL agent still needs to learn a certain
amount of object motion data before making a wise rotation
determination. According to our observation, after entering the
camera’s field of view, an object generally stays for a period
of time that requires no camera rotations (termed quiescent
period), which facilitates initial training with object motion
data. However, only based on data collection in the quiescent
period, the model sometimes makes unreasonable rotation
determinations for the subsequent object tracking, e.g., rotating
dramatically for objects close to the view center, or keeping
still when an object tends to get rid of the field of view.

To overcome this issue, we make the RL agent draw on
learning experience from previous object tracking of the same
type. It has been illustrated that averaging the parameters of
the same neural cell across a number of NN models can
achieve aggregating these models’ experience [21]. We thus
conduct multi-model aggregation by fusing the NN parameters
of previous objects’ models. Suppose there are totally nm
models of objects with the same structure, and each model
contains nc cells. The NN parameters are denoted with a
matrix Ξij = (ξij), of which ξij indicates the parameter of
j-th cell in the i-th model. We perform a weighted averaging
operation following the principle of federated learning [21]
to calculate each element in the aggregated model, ξ̄ij =∑nm

i=1 ρiξij , where ρi represents the experience weight of
model i. We generally set equal weights for all previous
objects. Once an object has been tracked before (judged by a
ReID approach [22]), we set a prioritized weight as it provides
more experience. Through multi-model aggregation, the RL
agent can accelerate NN generalization during the camera’s
quiescent period.

IV. EVALUATION

In this section, we first briefly present implementation of
WiseCam, and then demonstrate its tracking cost-effectiveness
with real-world human tracking experiments as well as data-
driven testing of large-scale human trajectories.

A. System Implementation

To embody WiseCam’s generality for moving object track-
ing, we implement it on the two types of pan-tilt cameras
introduced in §II-A. Note that the stepper-driven commodity
pan-tilt cameras do not support directly running processes
on their platforms. Instead, most of them provide public

interfaces for status acquisition and rotation execution based
on a common protocol ONVIF [23]. By contrast, the servo-
driven pan-tilt cameras should generally be built by oneself
with a small tripod head and a fixed camera, and controlled by
PWM drivers [24]. In view of the two heterogeneous cameras’
properties, we build a prototype of WiseCam on Raspberry Pi
4B [25] that communicates with them through WiFi and I2C
bus, respectively. On this basis, the prototype controls gimbal
rotations of the motors by invoking ONVIF or PWM APIs.

We implement both components of WiseCam in Python.
Object Tracker utilizes the OpenCV library [26] for frame
image processing, which helps achieve object detection and
cross-frame correlation. To reduce the computation overhead,
we set frame size to be the camera settings’ minimum value
640×480 pixels. RL Agent builds the NN models with Tensor-
Flow [27]. In each state we input the latest k = 10 quadruples
of the motion trajectory into the model’s LSTM layer. Based
on grid search [28], we set the unit number of FC layer as
32, set the learning rate α and discounting factor γ as 0.1 and
0.95, and empirically set the weights of rewards β, δ, and η to
be 1, 1, and 2, respectively. We employ Adam optimizer [29]
to update the gradient descent.

B. Experiment Setup

We take a Raspberry Pi 4B equipped with a 4-core CPU
@1.5GHz and 2 GB of memory as the deployment platform. It
communicates with a typical commodity pan-tilt camera with
stepper motors through WiFi with 100 Mbps of maximum
bandwidth, and controls a self-built pan-tilt camera with servo
motors by I2C bus at a transfer rate of 3.4 Mbps. The two
cameras’ maximum pan-tilt rotating angles (Θp,Θt) and view
angle ϕ are (330◦, 150◦), 115◦ and (210◦, 130◦), 120◦,
respectively. Besides, we connect each camera with a power
meter to measure power consumption.

Metrics and Baselines. In view of the pan-tilt cameras’ prac-
tical requirements, we concern two metrics – tracking duration
and rotational power consumption, which are identical to those
in §II-B. Among those measurement results of the state-of-the-
art tracking approaches, both fault-tolerant boundary and PID
control mechanisms can bring better performance to the target-
based approach. Therefore, we simultaneously integrate them
into the basic target-based approach (with optimal parameters
preset) and adopt the improved approach as a baseline for
comparison. We also take the grid-based approach that is
widely adopted by commodity cameras as another baseline in
regardless of its performance. We compare WiseCam against
the two baselines on both types of pan-tilt cameras.

Testing Datasets. Similar to measurements in §II-B, we track
the 50 recruited volunteers’ motions when they walk around
a room stochastically with two pan-tilt cameras controlled
by WiseCam and the two baselines. In addition, to evaluate
WiseCam’s tracking performance in the outdoor environment,
a large-scale data trace of human trajectories is crowdsensed
from 1052 students who walk daily with mobile devices over
a semester, during which geolocations are collected every 15



Servo-Driven0 
Stepper-Driven

20

40

60

80

100

120
Tr

ac
ki

ng
 D

ur
at

io
n 

(s
)

Grid-Based 
Target-Based 
WiseCam

Fig. 8. Tracking Duration of WiseCam compared
with baselines on two types of pan-tilt cameras.

1 2 3 4 5
Rotational Power Consumption (W)

0

0.2

0.4

0.6

0.8

1

C
D

F

Grid-Based_Stepper 
Target-Based_Stepper 
WiseCam_Stepper
Grid-Based_Servo
Target-Based_Servo 
WiseCam_Servo

Fig. 9. CDFs of rotational power consumption
by tracking all volunteers.

0 20 40 60 80

Tracking Duration (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Grid-Based 
Target-Based 
WiseCam

Fig. 10. CDFs of tracking durations conducted
with large-scale trajectory data.

seconds (over 60 million samples in total). According to the
monitoring range of typical outdoor cameras, we cluster the
samples and extract trajectory segments in 10 circle areas
with a radius of 20 meters, where the samples are highly
concentrated (3024 segments in total). Then we virtually put
a stepper-driven pan-tilt camera in the center of each area
(the view angle should be 40◦ for the preset range), and ac-
cordingly transform the collected geolocations into coordinates
in the camera’s panoramic space. Based on the transformed
trajectories with 15-second intervals, we can emulate moving
object tracking (only conducting the pan-tilt rotation determi-
nation) with WiseCam and the two baselines. In this case, the
object is abstracted into a point, and coordinates of its centroid
and virtual boundary point are the same.

C. End-to-End Performance

We start with measuring WiseCam’s overall performance.
Note that “Target-Based” in all the following experimental
figures refers to the improved target-based tracking approach.

Improvement at Tracking Duration. We first evaluate how
long WiseCam can keep sight of the 50 volunteers in the
real-world tracking experiment. To quantify this, we show in
Fig. 8 WiseCam’s average, maximum and minimum tracking
durations for the 50 tracking tests with both types of cameras
in contrast with those of two baselines. We can see from the
figure that WiseCam keeps tracking the target object for overall
2.4 to 8.4 times as long as the baselines. The improvement
mainly comes from WiseCam’s cross-frame object correlation
and wise rotation determination, which helps overcome the
drawbacks of baselines illustrated in §II-B.

Reduction at Power Consumption. We also concern energy
cost incurred by camera rotations during the above experiment.
Accordingly, we monitor the two involved cameras’ power
variances every 20 seconds. We average the power monitoring
values in each tracking duration to eliminate the influence
of test items’ tracking duration difference. The cumulative
distribution functions (CDFs) of the six test items’ rotational
power consumption for the 50 tracking tests are plotted in
Fig. 9. The two baselines both exhibit an apparently longer
tail, and the reduction by WiseCam is 48.9% on average
and at least 38.1%. It is largely due to WiseCam’s ability
to refrain from a multitude of dispensable gimbal rotations
that bring remarkable energy cost. According to the result

TABLE II
AVERAGE ENERGY COST (WH) OF TWO CAMERAS FOR ALL VOLUNTEERS

WITH WISECAM AND TWO BASELINES.

Tracking Approaches Stepper-Driven Servo-Driven
Grid-Based Tracking 4.546 3.641

Target-Based Tracking (Imp.) 3.535 2.894
WiseCam 3.056 1.978

comparison given in Table II, WiseCam can reduce the servo-
driven camera’s energy cost to ∼2 Wh. It can well support
daily object tracking of pan-tilt cameras powered by a typical
solar battery with the energy budget 48 Wh/day [13].

Performance on Large-Scale Data. We further conduct
large-scale object tracking emulation with WiseCam and the
two baselines based on the transformed human trajectories
(cf. §IV-B). Through comprehensive testing of tracking all
3024 trajectory segments on the configured virtual camera, we
describe the CDF of tracking duration for the three approaches
in Fig. 10. Similar to results of the real-world human tracking
experiment, both the median and tail durations of WiseCam
(62.1 s and 88.4 s) are much longer than those of the baselines,
which suggests WiseCam’s high effectiveness given the large
total number of trajectories.

D. Micro Benchmarks

We next study the impact of individual components inside
WiseCam (shown in Fig. 5) by comparing them with some
alternative methods acting on the human tracking traces.

Tracking Accuracy vs. Efficiency. We contrast our moving
object tracking scheme with three alternative approaches –
repeatedly detecting objects with temporal frame differencing
(TFD) [11], optical flow (OF) [14], and Tiny YOLOv3 [30].
We rerun the four algorithms on the videos recorded during
the previous human tracking experiment. We manually label
the target object’s position in each video frame as the ground
truth. Given that today’s pan-tilt cameras are not equipped
with GPU, here we execute all the algorithms only by CPU.
Fig. 11 shows their (a) tracking failure rate and (b) per-frame
execution time. Although YOLOv3 provides the lowest failure
rate, its execution speed is slowest among the algorithms8. In

8YOLO’s inference time is ∼50 ms when executed with well-performed
GPUs [30], but an embedded processor will slow it down by over 10 times.



0 

10

20

30

40

50
Tr

ac
ki

ng
 F

ai
lu

re
 R

at
e 

(%
)

0

200

400

600

800

1000

1200

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

 TFD    OF YOLO Ours TFD    OF YOLO Ours

Fig. 11. Failure rate and per-frame execution time
comparisons among tracking algorithms.

20 40 60 80 100
Convergence Time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Policy Gradient
W/o Aggregation 
WiseCam

Fig. 12. The influence of training algorithm and
aggregation mechanism to the convergence time.

0 60 120 180 240
Monitoring Time (min)

0

2

4

6

8

10

U
til

iz
at

io
n 

(%
)

CPU Usage 
Memory Usage 
Network Usage

Fig. 13. WiseCam’s resource usages during the
moving object tracking process.

contrast, our algorithm achieves a good balance between accu-
racy and efficiency, which fits tracking with pan-tilt cameras.

Convergence of RL Model. We further concern how fast
the RL model can converge and also the effects of training
algorithm and model aggregation mechanism on this. Accord-
ingly, we take adopting the aforementioned policy gradient
algorithm [19] for training (“Policy Gradient”) and adopting
the PPO algorithm for training without model aggregation
(“W/o Aggregation”) as two comparison methods. Here we
consider 10 successive determinations that keep the object
in the camera’s field of view as a signal of model conver-
gence. Based on this notion, we observe convergence time of
WiseCam and two comparison methods on tracking the 50
volunteers, and plot their CDFs in Fig. 12. The comparisons
validate the PPO algorithm’s fast convergence in practice and
demonstrate effectiveness of model aggregation.

Resource Usages. We finally monitor the platform Raspberry
Pi’s resource usages during the stepper-driven pan-tilt camera’s
human tracking experiment. In addition to the basic CPU and
memory variations, we also measure its network usages given
that rotation actions are transferred to the camera through
WiFi. As shown in Fig. 13, the usages of CPU, memory, and
network (with combined inbound and outbound traffic) are
quite low and steady (all in the range of 5% to 8%) confronted
with intensive rotations, which demonstrates that the resource
of a single Raspberry Pi is more than enough to handle the
pan-tilt camera’s moving object tracking.

V. RELATED WORK

We discuss closely related work in the following two areas.

Camera Video Analytics. With the prevalence of IoT
cameras in today’s society, there has been a quantity of
work on video analytics for surveillance. Most recent studies
process live videos streamed from the camera on edge or cloud
servers with NN-based object detection models. Specifically,
Chameleon [31] and VideoStorm [32] dynamically pick the
best NN configuration to balance accuracy and resource over-
head. Focus [33] and NoScope [34] improve the efficiency of
video analytics pipelines by filtering out frames that lack rele-
vant information for query. In addition, Reducto [35] achieves
on-camera filtering by adapting filtering decisions, and Elf [13]
executes video object counting under energy constraint. In
contrast, our work conducts video analytics towards more

rigorous requirements – serving real-time rotations with lowest
possible energy cost.
Pan-Tilt Camera Tracking. Different from wireless signal-
based tracking methods facilitated by sensing devices [36],
[37], pan-tilt cameras adopt visual tracking together with two-
dimensional rotations to keep sight of moving objects. As a
practical functionality, moving object tracking has received
tremendous attention in the computer vision field. Today’s
commodity pan-tilt cameras repeatedly conduct object de-
tection with intuitive algorithms [11], [12]. In spite of its
low cost, this approach often results in low accuracy of
object positioning. Another popular tracking approach is to
recognize objects in each frame with a CNN classification
model (e.g., YOLO [38], R-CNN [39]), which however can
hardly guarantee tracking timeliness due to the long execution
time. Moreover, some studies apply the above algorithms in
pan-tilt camera tracking [4], [40], [41], but they all adopt the
aforementioned inefficient target-based tracking approach. Our
work overcomes the drawbacks by designing a correlation-
filtering-based tracking scheme and an RL-based rotation de-
termination model, which help achieve cost-effective moving
object tracking.

VI. CONCLUSION

We present WiseCam, a cost-effective moving object track-
ing solution for pan-tilt cameras in this paper. We first
reveal the ineffectiveness and high cost of the state-of-the-
art tracking approaches by real-world measurements. Guided
by our observations from measurements, we design enabling
mechanisms of long-term moving object tracking and online
rotation determination. We put the techniques together and
implement an open-source WiseCam prototype, and then show
its high tracking duration and low power consumption with
comprehensive evaluations. In practice, WiseCam can benefit
pan-tilt cameras in diverse scenarios, especially when the
cameras’ energy is constrained.

ACKNOWLEDGMENT

This research is supported in part by the National Key R&D
Program of China under grant 2021YFB2900100, the National
Natural Science Foundation of China under grant 62102224,
the Beijing Natural Science Foundation under grant 4222026,
and the Engineering Research Center of Ministry of Education
on Database and Business Intelligence.



REFERENCES

[1] Q. Research, “Global PTZ Camera Market Research Report 2020,” Tech
Report MSR2422104, pp. 1–120, 2020.

[2] Wikipedia, “Stepper Motor,” 2022, https://en.wikipedia.org/wiki/
Stepper motor.

[3] I. Products, “Stepper Motor Fundamentals,” 2022, https://islproducts.
com/design-note/servo-motor-fundamentals.

[4] K. Okumura, H. Oku, and M. Ishikawa, “High-speed Gaze Controller
for Millisecond-order Pan/tilt Camera,” in Proceedings of IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2011, pp. 6186–
6191.

[5] Z. Wu and R. J. Radke, “Keeping a Pan-Tilt-Zoom Camera Cali-
brated,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), vol. 35, no. 8, pp. 1994–2007, 2013.

[6] M. Rovai, “Automatic Vision Object Track-
ing,” 2018, https://towardsdatascience.com/
automatic-vision-object-tracking-347af1cc8a3b?gi=661a553688.

[7] Wikipedia, “PID Controller,” 2022, https://en.wikipedia.org/wiki/PID
controller.

[8] ChangingMinds, “Simplicity Principle,” 2022, http://changingminds.org/
principles/simplicity.htm.

[9] ReoLink, “ReoLink Go: Wire-Free Security Goes Anywhere with 4G
LTE,” 2022, https://reolink.com/product/reolink-go.

[10] Eufy, “Pre-Order SoloCam Series,” 2022, https://us.eufylife.com/pages/
solocam-preorder.

[11] A. J. Lipton, H. Fujiyoshi, and R. S. Patil, “Moving Target Classification
and Tracking from Real-Time Video,” in Proceedings of IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE, 1998,
pp. 8–14.

[12] M. Piccardi, “Background Subtraction Techniques: A Review,” in
Proceedings of IEEE International Conference on Systems, Man and
Cybernetics. IEEE, 2004, pp. 3099–3104.

[13] M. Xu, X. Zhang, Y. Liu, G. Huang, X. Liu, and F. X. Lin, “Approximate
Query Service on Autonomous IoT Camera,” in Proceedings of 18th
ACM International Conference on Mobile Systems, Applications and
Services (MobiSys). ACM, 2020, pp. 191–205.

[14] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique
with an Application to Stereo Vision,” in Proceedings of Imaging
Understanding Workshop. DARPA, 1981, pp. 121–130.

[15] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
Object Tracking using Adaptive Correlation Filters,” in Proceedings
of Twenty-Third IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2010, pp. 2544–2550.

[16] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] Y. L. Cun, I. Kanter, and S. A. Solla, “Eigenvalues of Covariance
Matrices: Application to Neural-Network Learning,” Physical Review
Letters, vol. 66, no. 18, pp. 2396–2399, 1991.

[18] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006, p. 236.

[19] M. Pirotta, M. Restelli, and L. Bascetta, “Adaptive Step-Size for Policy
Gradient Methods,” in Proceedings of Conference on Neural Information
Processing Systems (NIPS). NIPS, 2013, p. 1394–1402.

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” in arXiv preprint, 2017,
p. arXiv:1707.06347.

[21] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proceedings of International Conference on
Artificial Intelligence and Statistics (AISTATS). AISTATS, 2017, pp.
PMLR 54:1273–1282.

[22] A. Bedagkar-Gala and S. K. Shah, “A Survey of Approaches and Trends
in Person Re-Identification,” Image and Vision Computing, vol. 32, no. 4,
pp. 270–286, 2014.

[23] ONVIF, “ONVIF Profile S Specification v1.3,” 2019.
[24] Adafruit, “Adafruit 16-Channel 12-bit PWM/Servo Driver - I2C inter-

face - PCA9685,” 2021, https://www.adafruit.com/product/815.
[25] R. Pi, “Raspberry Pi 4: Your Tiny, Dual-Display, Desktop

Computer,” 2021, https://https://www.raspberrypi.org/products/
raspberry-pi-4-model-b/.

[26] OpenCV, “OpenCV 4.5.0,” 2020, https://opencv.org/opencv-4-5-0/.
[27] Google, “TensorFlow: An End-to-End Open Source Machine Learning

Platform,” 2021, https://tensorflow.google.com/.
[28] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the Rela-

tionship between Classical Grid Search and Probabilistic Roadmaps,”
The International Journal of Robotics Research, vol. 23, no. 7-8, pp.
673–692, 2004.

[29] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in arXiv preprint, 2014, p. arXiv:1412.6980.

[30] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
in arXiv preprint, 2018, p. arXiv:1804.02767.

[31] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable Adaptation of Video Analytics,” in Proceedings
of Annual Conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication (SIGCOMM). ACM, 2018, p.
253–266.

[32] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live Video Analytics at Scale with Approximation
and Delay-tolerance,” in Proceedings of 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI). USENIX,
2017, p. 377–392.

[33] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus: Querying Large
Video Datasets with Low Latency and Low Cost,” in Proceedings of 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). USENIX, 2018, p. 269–286.

[34] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “NoScope:
Optimizing Neural Network Queries over Video at Scale,” in Proceed-
ings of the VLDB Endowment, vol. 10, no. 11. VLDB, 2018, pp.
1586–1597.

[35] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali,
“Reducto: On-Camera Filtering for Resource-Efficient Real-Time Video
Analytics,” in Proceedings of Annual Conference of the ACM Special In-
terest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication (SIGCOMM).
ACM, 2020, p. 359–376.

[36] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “LANDMARC: Indoor
Location Sensing Using Active RFID,” in Proceedings of the First IEEE
International Conference in Pervasive Computing and Communications
(PerCom). IEEE, 2003, pp. 1–9.

[37] K. Qian, C. Wu, Z. Yang, Y. Liu, and K. Jamieson, “Widar: Decimeter-
Level Passive Tracking via Velocity Monitoring with Commodity Wi-
Fi,” in Proceedings of the Eighteenth International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc). ACM, 2017,
pp. 6:1–10.

[38] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
Proceedings of 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2017, pp. 6517–6525.

[39] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation,”
in Proceedings of 27th IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2014, pp. 580–587.

[40] D. D. Doyle, A. L. Jennings, and J. T. Black, “Optical Flow Background
Estimation for Real-Time Pan/Tilt Camera Object Tracking,” Measure-
ment, vol. 48, pp. 195–207, 2014.

[41] S. Hu, K. Shimasaki, M. Jiang, T. Senoo, and I. Ishii, “A Simultaneous
Multi-Object Zooming System Using an Ultrafast Pan-Tilt Camera,”
IEEE Sensors Journal, vol. 21, no. 7, pp. 9436–9448, 2021.


